Tech Report C20003187 Unclassified

Potential Reasons

Believes in a multifaceted approach

to manage network congestion.

Advocates for a comprehensive

high-congestion scenarios.

Focused on clarity and legal

and requirements.

and overall impact.

to net neutrality rules.

UEs.

implications.

leveraged.

strategy that considers all aspects

Concerned about the effectiveness in

Cautious about the implementation

compliance, particularly with regard

Stresses the importance of a solution

Suggests a collaborative approach to

fully understand requirements and

Believes in the effectiveness of the

emphasizes standard definitions.

integrates with UE OS.

solution for managing overload but

Seeks clarity on how the requirement

Focuses on the existing capabilities of

smartphones and how they can be

Supports the approach as a method

to mitigate RRC signaling congestion.

implementation and effectiveness in

Concerned about the practical

varying traffic conditions

that works across a vast majority of

5 Feb 2024

APEX STANDARDS From Principles to Protocols: IETF and 3GPP's Roles in Upholding Net Neutrality

Company

TeliaSonera

Deutsche

Telekom

Telecom Italia

CATT

Intel

ZTE

Ericsson

Huawei

MediaTek

Qualcomm

NTT Docomo

Nokia

Viewpoint

Supports limiting unattended data as a tool for

emphasizes the need for a broader perspective

Views the solution as potentially useful but not

Sees potential utility in the approach but

congestion management

operator's perspective.

with net neutrality.

wide applicability.

understanding.

congestion contexts.

in congestion scenarios.

predictability and effectiveness

definitions.

and liaison with other groups.

sufficient for extremely loaded cells.

Agrees on the potential benefits from an

Agrees in principle but highlights concerns

about definitions and regulatory compliance

unattended traffic but emphasizes the need for

Agrees on the benefits but emphasizes liaising

Supports restricting unattended traffic during

requirement but suggests further clarification.

Agrees with restricting unattended data traffic

Acknowledges the potential gain in allowing

(2015) — A Reflective Look Considering Potential Evolution Over Time

only foreground traffic but has concerns about

Table 2 Net Neutrality Perspectives: The Corporate Differences from 3GPP TDoc R2-156223

network overload, advises adhering to SA1

Sees the benefit of restricting unattended

Agrees with the necessity of the SA1

traffic, especially in power saving and

Sees benefits in reducing or distributing

with other groups for a comprehensive

N et neutrality, since the term was coined by a Columbia Law School Professor, Tim Wu, in 2003, is the principle that Internet service providers (ISP) should treat all Internet data equally, without discriminating or charging differently by user, content, website, platform, application, or method of communication. The concept has sparked global debate, touching on issues of freedom, competition, and the nature of the Internet itself.

Net Neutrality and QoS Implications Quality of Service (QoS) is essential for managing network traffic and ensuring the smooth delivery of real-time services like VoIP. However, it creates a dilemma where ISPs may prioritize traffic to maintain quality, potentially leading to unfair advantages and a tiered service model. The debate centers on whether QoS can be misused to circumvent net neutrality, allowing ISPs to favor their services over competitors'.

Industry Attitudes

Views on net neutrality vary. ISPs and network operators often argue for the freedom to manage their networks and justify the need for paid prioritization to recoup hefty investments made in building high-capacity infrastructures. Content providers like Netflix and YouTube, major bandwidth users, are staunch advocates for net neutrality, which is crucial for their service quality and operational costs. In contrast, the net neutrality debate takes on additional dimensions in emerging economies, intertwining with broader concerns over internet access and the digital divide. Net neutrality itself stands for the equal treatment of all internet data, irrespective of its origin or nature, a principle at the heart of ongoing global discussions about internet freedom and regulation.

Government Attitudes Globally

Partisan positions in the U.S. regarding net neutrality have been marked by fluctuating federal policies which are closely tied to the political party of the administration in power. The core of the net neutrality debate hinges on whether ISPs should be classified under the Communications Act of 1934, as amended by the Telecommunications Act of 1996, as either Title I "information services" or Title II "common carrier services". This classification affects the FCC's authority over ISPs. During the Obama administration, the FCC, led by Chairman Tom Wheeler, voted to classify ISPs as Title II common carriers, thus subjecting them to net neutrality principles. This classification was upheld after a legal challenge raised by the ISP industry. In contrast, the Trump administration's FCC reverted to classifying ISPs as Title I information services, which carry less regulatory authority for the FCC and allowed for more leeway in state-level legislation. Most recently, under President Biden, the FCC voted to approve a Notice of Proposed Rulemaking that seeks comments on a plan to restore net neutrality rules and the regulation of Internet service providers. These shifts reflect the broader partisan divide, with Demo supporting more regul net neutrality, while advocate for less favoring market-driven

In contrast, the EU has consistently championed net neutrality, establishing anti-discrimination rules for online data in 2015. The global landscape varies, with India maintaining stringent laws, while other nations have limited or no regulations, each influenced by their unique contexts. **Table 1**

Country	Attitude	Authority	Enforcement
United	Varied by administration;	Federal Communications	Reduced FCC oversight; court
States	less strict approach since	Commission (FCC)	rulings have influenced policy
	2017.		changes.
Canada	Strong support for net	Canadian Radio-television	CRTC enforces regulations
	neutrality.	and Telecommunications	against ISP traffic
		Commission (CRTC)	discrimination.
United	Maintains regulations;	Office of Communications	Ofcom enforces net neutrality,
Kingdom	influenced by EU	(Ofcom)	post-Brexit framework under
	standards.		discussion.
European	Strong proponent of net	National Regulatory	Enforces Open Internet
Union	neutrality; established	Authorities (NRAs) in EU	Regulation across member
	regulations.	Member States	states.
Finland	Proactive in upholding	Finnish Transport and	Ensures ISPs cannot block or
	net neutrality, aligns with	Communications Agency	throttle internet traffic.
	EU regulations.	(Traficom)	
Sweden	Aligns with EU regulation.	Swedish Post and	Monitors ISP compliance with
		Telecom Authority (PTS)	equal treatment of traffic.
South	Advanced internet	Korea Communications	Guidelines promote fair
Korea	infrastructure with a	Commission	treatment; instances of
	complex stance.		preferential treatment exist.
Japan	Industry-led approach;	Ministry of Internal	Relies on industry self-
	guidelines rather than	Affairs and	regulation, with government
	strict regulations.	Communications	encouraging fairness.
China	Focus on internet	Ministry of Industry and	Regulations exist but are part
	censorship and control.	Information Technology	of broader internet policies.
India	Strong stance in favor of	Telecom Regulatory	Comprehensive regulations by
	net neutrality.	Authority of India (TRAI)	TRAI prohibiting data
			discrimination.
Australia	No specific net neutrality	Australian Competition	ISPs manage traffic freely,
	legislation; market-driven	and Consumer	ACCC intervenes in anti-
	approach.	Commission (ACCC)	competitive practices.

ocrats generally	Responses to the net neutrality debate	focus on bi
lation to enforce	have spurred innovation of alternative	seamless integr
ile Republicans	approaches. Decentralized technologies,	may indicate
federal control,	such as blockchain and decentralized	experience. Qu
n solutions.	applications (DApps), are being explored	the forefront
has consistently	as ways to avoid centralized internet	support such d
ality, establishing	control. Meanwhile, VPNs and	congestion and
les for online data	encryption serve as interim measures to	Understanding
landscape varies,	circumvent ISP-imposed restrictions,	neutrality is c
ng stringent laws,	although they represent more of a	relies on IETF
ave limited or no	workaround than a long-term solution.	IETF's propose
luenced by their	Standardization Nuances	draft-yiakoun
e <u>1</u>	In the telecom industry, 3GPP	offer a way to
<u> </u>		line with net
	discussions on net neutrality influence ISP business strategies A pertinent	facilitate a dia
	INP DUSIDESS SITURGIES A DEPTIDENT	include a ala

Technology Response

discussions on net neutrality influence ISP business strategies. A pertinent example is the debate around the Edge DNS Client (EDC) in 5G networks, highlighted in TDoc S2-2108694. This document discusses using EDC in a way that complies with both net neutrality and technical specifications. It addresses concerns about the potential for operators to override user DNS preferences, which could impact user freedom and network control.

The topic on traffic management extends from the service aspects in (SA) to the physical layer (RAN), for example, in R2-156223, where strategies like Access Class Barring (ACB) are scrutinized for their crude approach to managing surges during events, often at the expense of network performance. Proposed measures aim to differentiate between attended (user-initiated) and unattended traffic to enhance efficiency. This raises questions of net neutrality adherence. Companies have diverse concerns on these proposals due to their varying priorities and market positions. Firms like Nokia and Ericsson prioritize congestion management techniques, considering their impact on network

reliability. Telecom Italia and Huawei broad applicability and ration, respectively, which their emphasis on user ualcomm and MediaTek at of chipset innovation, differentiation to alleviate d conserve energy. Table 2 IETF's approach to net crucial for 3GPP, which for internet protocols. The ed network tokens, as per mis-network-tokens-01, manage network traffic in neutrality. These tokens alogue between endpoints and networks about traffic treatment, enabling operators to provide higher QoS for specific services and users to consent to such treatment. This approach respects net neutrality principles by prioritizing user preference and privacy, and aims to balance efficient resource use with a fair internet.

3GPP's progression with 5G, 5G Advanced and 6G, particularly in network slicing, introduces further complexity. Network slicing allows the creation of distinct virtual networks, each optimized for different services, which implicates the net neutrality considerations. As technology advances, it is likely that an increasingly detailed approach will be needed to ensure net neutrality principles remain relevant.

Current Trends and Future Outlook

Net neutrality remains a debated issue, with the need to balance the open internet's ideals against network management's realities and business imperatives. This debate is expected to evolve under the continuous dialogue among regulators, industry stakeholders, and the public to navigate these challenges.

Table 1 Perspectives and Enforcements by Countries